

Editorial

or the second time in succession, AIR² highlights two exposure platforms in this 16th issue. Although exposure platforms are the cornerstone of most radiation protection research activities, featuring two together also indicates our lack of knowledge and visibility of many of the databases, sample banks and cohorts available to our research community. These less visible infrastructures are also the most fragile. Frequently created during a European project, they fall dormant afterwards through lack of sustainable funding, when they could have been so useful for future research if kept active and updated. But AIR² could help to keep them under the spotlight. The more attractive they are, the greater their chances of attracting new users. AIR² aims to optimize all efforts to revive these databases, sample banks and cohorts.

Dr Laure Sabatier, CEA

The floor to...

he goal of task 6.3, based on previous experience gained from DOREMI and OPERRA and the results of tasks 6.1 and 6.2, is to facilitate access to all suitable infrastructures identified and, in some cases, to rare or unique infrastructures for radiation protection research.

For its two infrastructure calls, CONCERT has chosen to take an

open-minded approach and to accept all the various types of infrastructures, on condition that the cost of the activities

for the submitted projects is included in the global cost of the research project.

The funding scheme creates access to the infrastructures but does not guarantee their sustainability nor any potential future access for our community.

The work of task 6.3 involves identifying the support needs to achieve sustainability. These include the necessary maintenance and upgrade of materials, maintaining skills and state-of-the-art facilities, developing specific training courses for relevant infrastructures, increasing accessibility through use of simple procedures and common protocols, and finally guaranteeing the quality of the results produced. These needs are all components of the strategy to ensure the continued existence of the infrastructures and thus of the research programmes related to the priorities defined in the SRA developed by the platforms MELODI, ALLIANCE, NERIS, EURADOS, and more recently EURAMED.

summary: WP6

establishing links between infrastructures and researchers; it provides the information needed to develop opportunities with

contributes

to

the possibility of infrastructure access and funding; it builds and offers possible ways to implement best practice and it focuses on synergies. The true success of WP6 will be measured when a roadmap approved by all parties is implemented in order to increase access to and use of these infrastructures.

Jean-Michel Dolo CEA CONCERT WP6.3

Issue **16** April **2017**

Future events:

2nd Call

1 Mar 2017: Opening date

May 2nd, 2017: Deadline

WP 6 News:

Next WP6 meeting:

May 22nd, Budapest, Hungary

AIR²D²:

Please complete the online <u>form(s)</u> to register your infrastructure(s) in the database.
A new option to feature your infrastructure is now available: <u>add document</u>.

Contents:

Exposure platforms	<u>Changing</u> <u>dose rate</u> <u>(SU)</u>
Exposure Platforms	<u>Low dose</u> <u>rate (SU)</u>
Analytical platforms, Models, Tools	<u>Advanced</u> <u>Technologies</u> <u>Network</u> <u>Center</u>

Next issue

May 2017

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287

Strategy for Facilitating Access to infrastructures

In

Exposure platforms

Changing dose rate exposure facility

Exposure of cells to continuously changing photon dose rate

ID Card:

Exposure type:

Source:

Dose rate: 2.2 to 37 mGy per minute

Irradiation type:

Irradiated organism type:

Address:

Access:

Supporting lab:

Internet link:

Contact: Andrzej Wojcik

Related to:

xposure scenarios where the dose rate is continually changing are very common. A good example is aircraft flight where the dose rate of cosmic radiation can change 16-fold during take-off and landing. Moreover, there are many accidental exposure scenarios where either the sources or the exposed subjects are in motion with respect to one another. Despite the fact that many exposures involve changing dose rates, the vast majority of research studying the effects of ionising radiation is performed exposing samples at constant dose rates. It is

The presistaltic pump is not visible. The X-ray tube is positioned below the incubator and the whole setup is enclosed in a lead cabinet for safe use

possible that the technical limits of the irradiation equipment used may prevent other types of exposure scenarios. However, effects from such exposures may be highly relevant for the assessment of radiation risk. Thus, it is surprising that research on the biological effects of changing dose rates has, until recently, been neglected.

To study the effects of changing dose rates, we have constructed a facility where three samples can be simultaneously irradiated with X-rays either at an increasing, a decreasing, or a constant dose rate. The facility fits inside a 37°C incubator that can be positioned above an X-ray tube or a gamma source. Cells in tubes, flasks or Petri dishes can be simultaneously exposed to an increasing, a decreasing and a constant dose rate in the range of 2.2 to 37 mGy per minute.

The facility is composed of three identical Plexiglas tanks, separated by 4 mm lead plates to absorb scattered radiation. Tanks 1 and 2 are

interconnected by а silicone tube via а Cell peristaltic pump. samples can be positioned on top of the tanks. The facility fits inside a 164 l cell incubator modified so that there are no wires or electronic components in its bottom plate. An X-ray

Andrzej Wojcik

tube is placed under the incubator and the distance from the X-ray source to the bottom of the facility is ~ 30 cm. The beam angle, as given by the manufacturer, is 40° x 55°.

During exposure, the pump transfers the shielding medium, an aqueous solution of barium chloride, from one tank (increasing dose-rate, IDR) into the other (decreasing dose-rate, DDR), resulting in an exponential, 14-fold dose-rate change during the exposure. Tank 3 (average dose-rate, ADR) contains a volume of barium chloride resulting in the same dose-rate on top of the tank as the average dose-rate on top of tanks 1 and 2. The exposure is monitored with an ionisation chamber positioned on the tank that is acting as the IDR tank, and terminated when the starting conditions have been reversed on top of tanks 1 and 2. Consequently, the same total dose will have been delivered on top of all three tanks when the exposure is terminated.

The facility makes it possible to characterise the cellular response to changing dose rates. The design and low building cost of the device permit users to customise and build a device to suit their particular needs, encouraging other research groups to contribute to the understanding of the effects of changing dose rates.

Petri dishes are placed on top of tanks between which a barium chloride solution is pumbed with the help of a peristaltic pump (green). A third tank (visible behind the two front tanks) is permanently filled with a volume of barium chloride that yields the average dose rate. Consequently, cells on all three tanks receive the same dose

A NEW DEVICE TO EXPOSE CELLS TO CHANGING DOSE RATES OF IONISING RADIATION, Brehwens K et al. Radiation Protection Dosimetry, 148 (2003), 366-371

MICRONUCLEUS FREQUENCIES AND CLONOGENIC CELL SURVIVAL IN TK6 CELLS EXPOSED TO CHANGING DOSE RATES UNDER CONTROLLED TEMPERATURE CONDITIONS, Brehwens K et al. International Journal of Radiation Biology, 90 (2014), 241-247

Issue 16 April 2017

Exposure platforms

Low dose rate facility at Stockholm University Low dose rate exposure facilities for cells and animals

Stockholm University was founded in 1878. Today, it has 70,000 students, 1,800 doctoral students and a staff of 5,000 who are active within science, the humanities, social sciences and law. The first Chair of Radiobiology was appointed in 1962, at a time when the work focused on genetics and plant breeding. In 1972, Radiation Biology moved to the Wallenberg Laboratory at the new campus in Frescati, and in 1985 to the Arrhenius Science Laboratories.

In the 1970's, low dose radiation facilities were constructed for field experiments, mainly for plant genetics and genotoxicology. At that time there was already a strong focus on DNA damage, shielding to a few μ Gy/h. Mice can be exposed chronically and exposure time should not exceed 4 weeks. The animals are hosted in standard cages with space for up to 5 mice per cage. The facility can accommodate four cages placed one on top

Siamak Haghdoost

of the other, providing a gradient of dose rates (picture 2). After exposure, the mice can be kept in the animal facility for extended periods depending on the choice of endpoints.

The construction has been approved bv the Swedish Radiation Safety Authority (SSM) and complies with the ethical rules for animal experiments. The primary objective is to provide scientists in the field of radiation protection research with access to a low dose and dose rate exposure facility for short term exposure of mice.

The animal exposure facility is located in the Stockholm University animal facility, and

includes animal care, animal exposure and post irradiation handling, for example, preparation of organs/samples at different times post irradiation. This radiation facility is primarily constructed for the study of biomarkers in response to low doses and dose rates and for studies of the mechanisms behind cellular/organ responses. It may also be used for pilot studies where only a small number of animals are needed.

Exposure type:

Low dose rates external gamma radiation

Source: Cesium 13

Dose rates Cell culture facility: From 1 to 50 mGy/h with lead shielding

Animal facility:

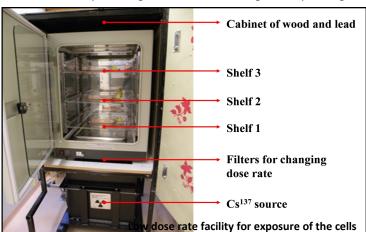
From 1 up to 70 mGy/h with lead shielding Housing capacity: 4 cages and 5 mice per cage

Preferred type of organism for irradiation: Mouse

Exposure time: Up to 4 weeks

Address:

Centre for Radiation Protection Research Department of Molecular Bioscience, Wenner-Gren Institute Stockholm University 10691 Stockholm Sweden


Access:

Joint research collaboration and upon ethical approval by the ethical committee

Contact:

Siamak Haghdoost <u>siamak.haghdoost@su.se</u> tel:+46(0)8164064 Andrzej Wojcik <u>Andrzej.Wojcik@su.se</u> tel:+46(0)8161217

Related to: MELODI, EURADOS

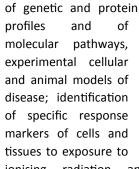
and several new methods were invented to measure DNA strandbreaks as well as chromosomal damage in plants and eukaryotic cells.

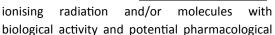
In the last two decades, the interest of the research groups has gradually moved towards risk estimates of low doses and dose rates, and to exploration of new technologies such as omics to study the cellular responses to doses in the mGy range. Thus new radiation exposure facilities were needed in the department and, with the help of skilled technicians and an excellent workshop, several new facilities were constructed, as described below.

At present two radiation facilities with caesium sources are available for chronic exposure of cells in culture, with dose rates ranging from 1 mGy/h up to 50 mGy/h, and dose rate can be decreased by lead shielding to a few μ Gy/h (picture 1) [1, 2]. A new radiation facility for animal exposure was constructed in 2015 and is equipped with a caesium source. This facility is constructed for exposure of mice to low doses and low dose rates. The dose rates range from 1 mGy/h up to 70 mGy/h and dose rate can be decreased by lead Related ded. Related MELODI, Cage no. 4 Cage no. 2 Cage no. 2 Cage no. 1 Filters radiation source

Low dose rate facility for animal exposure

THE NUCLEOTIDE POOL, ATARGET FOR LOW-DOSE GAMMA-RAY-INDUCED OXIDATIVE STRESS, T. Sangsuwan, S. Haghdoost, Radiation Research, 170 (2008), 776-783 QUANTITATIVE PROTEOMIC ANALYSIS REVEALS INDUCTION OF PREMATURE SENESCENCE IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS EXPOSED TO CHRONIC LOW-DOSE RATE GAMMA RADIATION, Yentrapalli, O. Azimzadeh, Z. Barjaktarovic, H. Sarioglu, A. Wojcik, M. Harms-Ringdahl, M.J. Atkinson, S. Haghdoost, S. Tapio,




oteomics, 13 (2013) 1096-1107

Analytical platforms, Models, & Tools

Advanced Technologies Network (ATeN) Center A large research infrastructures for advanced biotechnologies

he Advanced Technologies Network (ATeN) Center, directed by Prof. Maurizio Leone, is a centre of excellence of the University of Palermo (Sicily) which provides cutting-edge research, development and service activities for technological transfer to the public and private sectors. The Center consists of three macro-areas (Cellular and Molecular Biotechnology, In vivo Analysis, Biocompatible Materials and Systems) in which scientists with different backgrounds (e.g. biotechnology,

activity; validation of products for molecular diagnostics; development of services for advanced diagnostics and for drug discovery; development of bioinformatics (acquisition, products distribution, analysis storage, and interpretation of the data mainly for molecular biology, and genetics biochemistry).

The In Vivo Analysis macro-area, with two enclosures containing small animals and zebrafish, carries out analyses on the effects of ionising radiation and the

testing of drugs, biomaterials, biomarkers and radiopharmaceuticals, as well as functional analyses for the production of primary cultures from transgenic organisms and 3D imaging.

Multiple bioimaging techniques are available to explore the biological structure and function of molecules in live cells and in tissues by means of 3D and 4D measurements.

Confocal and multiphoton microscopy, atomic force microscopy, together with advanced spectroscopy techniques (e.g. Raman, EPR, NMR) can be applied to analyse biological, physical and chemical phenomena in order to characterise the material properties.

Maurizio Marrale

expression assay, protein mar EPR/TL dosimetry, gamma spe trometry, microscopy

CHAB mediterranean center for human health advanced biotechnologie

Capacity: 20 measurements per week

Waiting time: None

ID Card:

Duration of experiment: Dependent on experiment and assay

Address: Viale delle Scienze Edificio 18 I-91128 Palermo (Italy)

Access: Free

Internet link: http://www.chab.center/home-e

Contact: Maurizio Marrale <u>maurizio.marrale@unipa</u>.it +39 091 23899073

<mark>Related to:</mark> MELODI, EURADOS, RENEE

Ion PGM[™] System for Next-Generation Sequencing

Agenzia CMC Studio

Photo: /

biology, chemistry, physics, engineering, medicine, bioinformatics) work together to produce the technological know-how needed to achieve highly competitive scientific results. Due to its sophisticated structure and equipment (25 laboratories housed in 2500 m² with approx. 100 instrumentation facilities), ATeN is among the few centres in the world able to provide a production chain ranging from the synthesis of materials to in vivo tests.

The macro-area of Cellular and Molecular Biotechnologies deals with the production and propagation of stem cells and primary cell cultures, large-scale analysis of DNA, RNA and proteins. The laboratory of genomics and proteomics provides molecular analysis at advanced technological level. The laboratory works in different advanced sectors through the analysis of large families of genes, proteins, enzymes and metabolites. These sectors include: development and technological improvement of including proteins, vaccines drugs and monoclonal antibodies, which are largely obtained from targeted application of genetic modification techniques and personalised medicine; characterisation, through the analysis

Laboratory of Pulsed Electron Paramagnetic Resonance

MONITORING FEW MOLECULAR BINDING EVENTS IN SCALABLE CONFINED AQUEOUS COMPARTMENTS BY RASTER IMAGE CORRELATION SPECTROSCOPY [CADRICS], G. Arrabito, F. Cavaleri, V. Montalbano, V. Vetri, M. Leone, B. Pignataro, Lab on a Chip, 16 (2016), 4666-4676 PRELIMINARY APPLICATION OF THERMOLUMINESCENCE AND SINGLE ALIQUOT REGENERATION METHOD FOR DOSE RECONSTRUCTION IN SODA LIME

PRELIMINARY APPLICATION OF THERMOLUMINESCENCE AND SINGLE ALIQUOT REGENERATION METHOD FOR DOSE RECONSTRUCTION IN SODA LIME GLASS, M. Marrale, A. Longo, A. Bartolotta, M. D'oca, and M. Brai, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 297 (2013), 58-63

Issue	Exposure platforms	Databases, Sample banks, Cohorts Published to date:	Analytical platforms Models & Tools	24-28 April 2017 Emergency and recovery prepa- redness, and response NCRRP, Sofia, Bulgaria Contact: n.chobanova@ncrrp.org
				24 April-5 May 2017
Oct 2015, #1				Cellular effects of ionising radiation
Nov 2015, #1	FIGARO	FREDERICA	<u>RENEB</u>	introduction to radiation biology
100 2013, #2	B3, Animal Contamination Facility	The Wismut Cohort and Biobank	<u>The Hungarian Genomics Research</u> <u>Network</u>	Stockholm University, Sweden Contact:
Dec 2015, #3	Dulau Cassia Cilanas	CTODE	МЕТАВОНИВ	andrzej.wojcik@su.se
Feb 2016, #4	Pulex Cosmic Silence	<u>STORE</u>		
100 2010, 111	<u>SNAKE</u>	French Haemangioma		22 May-2 June 2017
Mar 2016, #5	<u>Radon exposure chamber</u>	Cohort and Biobank	<u>PROFI</u>	Modelling radiation effects from initial events
Apr 2016, #6	Biological Irradiation Facility	<u>3-Generations exposure study</u> Wildlife TransferDatabase	Radiobiology and immunology	University of Pavia, Italy
,, -			<u>platform (CTU-FBME)</u>	Contact:
May2016, #7	<u>CIRIL</u>	Portuguese Tinea Capitis Cohort	<u>LDRadStatsNet</u>	<u>Andrea.Ottolenghi@unipv.it</u>
Jun 2016, #8	Mixed alpha and X-ray	Elfe Cohort	<u>ERICA Tool</u>	6-16 June 2017
	exposure facility			Assessing risk to humans and the
Jul 2016, #9	SCRS-GIG	RES ³ T	CROM-8	environment NMBU, Oslo, Norway
Sep 2016, #10	<u>Facility radionuclides availability,</u>	INWORKS cohort	<u>EROIN-8</u> France Génomique	Contact:
	transfer and migration		France Genomique	<u>deborah.oughton@nmbu.no</u>
Oct 2016 #11	LIBIS gamma low dose rate	<u>JANUS</u>	Transcriptomics platform SCK CEN	
	<u>facility ISS</u>		Marscriptomics platform SCK CLN	Other Events
Nov 2016, #12	Microtron laboratory	EPI-CT Scan cohort	<u>CATI</u>	25-27 April 2017
Dec 2016, #13	Nanoparticle Inhalation Facility	<u>UEF Biobanking</u>	The Analytical Platform of the	COMET final event, Bruges, Belgium
			PREPARE project	8-11 May 2017
Feb 2017, #14	Infrastructure for retrospective radon & thoron dosimetry	<u>Chernobyl Tissue Bank</u>	HZDR Radioanalytical Laboratories	ConRad 2017, Bundeswehr Institute of Radiobiology, Munich, Germany
Mar 2017, #15	<u>Alpha Particles Irradiator</u> <u>Calibration Laboratory at KIT</u> Changing Dose rate (SU)		<u>SYMBIOSE</u>	14-19 May 2017 NEUDOS13 Neutron and Ion Dosi- metry Symposium Krakow, Poland
Apr 2017, #16	Low dose rate (SU)		Advanced Technologies Network <u>Center</u>	23-26 May 2017
				Operra final event
				Budapest, Hungary
				11-17 June 2017 <u>RAD 2017</u> Fifth International Confe- rence on Radiation and Applications in Various Fields of Research Budva, Montenegro
				3-8 September 2017 <u>ICRER 2017</u> , 4th International confe- rence on Radioecology and Environ- mental Radioactivity, Berlin, Germany
Coming soon:				10-12 October 2017
				Joint ICRP-RPW 2017 Paris, France
May 2017, #17	To Be Announced	To Be Announced	To Be Announced	5-11 November 2017 <u>MICROS 2017</u> , 17 th International Symposium on Microdosimetry, Venice, Italy

Editorial Committee: Jean-Michel Dolo, Elisabeth May, Laure Sabatier

Issue 16 April 20<u>17</u>

Future events:

CONCERT Short Courses