

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

## Heterogenous distribution of radionuclides and external dosimetry

Faire avancer la sûreté nucléaire

Wildlife Dosimetry Workshop

Madrid 10-12 june 2014

K. Beaugelin-Seiller

## Context



Wildlife Dosimetry Workshop - STAR - Madrid 10-12 june 2014



## Exposure to soil/sediment

#### One of the simplifications applied in environmental dosimetry

1 single layer
=> homogeneous composition
=> homogeneous contamination





Description of media (soil/sediment) not realistic

Does it matter in terms of external exposure?



**IRSN** 3/27

## How to deal with the question?

### **7** The example of the ERICA tool

- A given thickness for the soil/sediment layer, linked with...
- Two locations for the organism
  - At the surface
  - In the middle of the layer



#### **7** Doesn't match with the reality

✓ Do we need for more flexible tools/approaches?





## Assessors face such situations...

### **7** EMRAS II programme

STAR

### U-238 activity (Bq/kg) 0.00E+00 5.00E+03 1.00E+04 1.50E+04 2.00E+04

#### Dubyna Lake Deep



Reaverlodge scenario » ideal to explore the effect on dose rates of a more realistic description of the exposure medium

Wildlife Dosimetry Workshop - Madrid 10-12 june 2014



IRS

## Scenarios under consideration



Wildlife Dosimetry Workshop - STAR - Madrid 10-12 june 2014



## The « Beaverlodge » scenario (1/3) <sup>234</sup>Th profiles





#### Possibility to test the effect of the profile shape



Wildlife Dosimetry Workshop - Madrid 10-12 june 2014

**IRSN** 7/27

### An increasing complexity

Organism on sediment



A : 1 single layer topped by a contaminated surface

Three locations for the organism:>On the sediment>In the sediment, at different depths

А







### An increasing complexity



- A : 1 single layer topped by a contaminated surface
- B: 2 layers topped by a contaminated surface

Three locations for the organism:
>On the sediment
>In the sediment, at 2 different depths (in the middle of each layer)





#### An increasing complexity



Beaverlodge – Ace Bay

- A : 1 single layer topped by a contaminated surface
- B: 2 layers topped by a contaminated surface
- C: 7 layers, one for each measurement BAB







### An increasing complexity



Beaverlodge – Ace Bay

- A : 1 single layer topped by a contaminated surface
- B: 2 layers topped by a contaminated surface
- C: 7 layers, one for each measurement BAB

Two organisms (different size and shape + lifestyle): >Insect larvae
>Benthic fish





### An increasing complexity



- Possibility to test the organism effect (size and shape)
- Possibility to test the location effect / medium description
- $\checkmark$  « Limitation » due to tool capacities (9 layers, EDEN V3)



Wildlife Dosimetry Workshop - Madrid 10-12 june 2014



#### Other RN profiles

|                        | Beaverlodge Ace Bay (BAB) |                                |                  |                   |                   | Dubyna Lake Deep (DLD) |                   |                  |                                |                  |                   |                   |                   |                   |
|------------------------|---------------------------|--------------------------------|------------------|-------------------|-------------------|------------------------|-------------------|------------------|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|
|                        | <sup>238</sup> U          | <sup>234</sup> Th <sup>a</sup> | <sup>234</sup> U | <sup>230</sup> Th | <sup>226</sup> Ra | <sup>210</sup> Po      | <sup>210</sup> Pb | <sup>238</sup> U | <sup>234</sup> Th <sup>a</sup> | <sup>234</sup> U | <sup>230</sup> Th | <sup>226</sup> Ra | <sup>210</sup> Po | <sup>210</sup> Pb |
|                        |                           |                                |                  | 1150              |                   | 1570                   | 1570              | 47004            | 47004                          | 46775            |                   |                   | 2980              | 3060              |
| 0-2 cm                 | 6484                      | 6484                           | 6452             | 0                 | 11500             | 0                      | 0                 | 1                | 1                              | 7                | 1740              | 5480              | 0                 | 0                 |
|                        | 1741                      | 1741                           | 1732             | 3088              |                   | 4216                   | 4216              |                  |                                |                  |                   |                   | 1134              | 1268              |
| 2-4 cm                 | 4                         | 4                              | 9                | 6                 | 30886             | 6                      | 6                 | 63010            | 63010                          | 62704            | 1090              | 1840              | 0                 | 0                 |
|                        | 1377                      | 1377                           | 1370             | 2442              |                   | 3334                   | 3334              |                  |                                |                  |                   |                   |                   |                   |
| 4-6 cm                 | 0                         | 0                              | 3                | 4                 | 24424             | 4                      | 4                 | 18550            | 18550                          | 18460            | 300               | 930               | 3600              | 5440              |
|                        | 1210                      | 1210                           | 1204             | 2146              |                   | 2930                   | 2930              |                  |                                |                  |                   |                   |                   |                   |
| 6-8 cm                 | 3                         | 3                              | 4                | 7                 | 21467             | 7                      | 7                 |                  |                                |                  |                   |                   |                   |                   |
| 8-10 cm                | 2631                      | 2631                           | 2618             | 4666              | 4666              | 6370                   | 6370              |                  |                                |                  |                   |                   |                   |                   |
| 10-20 cm <sup>b</sup>  | 1662                      | 1662                           | 1653             | 2947              | 2947              | 4023                   | 4023              |                  |                                |                  |                   |                   |                   |                   |
| 20-22 cm               | 692                       | 692                            | 688              | 1227              | 1227              | 1675                   | 1675              |                  |                                |                  |                   |                   |                   |                   |
| simplified description |                           |                                |                  |                   |                   |                        |                   |                  |                                |                  |                   |                   |                   |                   |
|                        |                           |                                |                  | 1150              |                   | 1570                   | 1570              | 47004            | 47004                          | 46775            |                   |                   | 2980              | 3060              |
| Surface <sup>c</sup>   | 6484                      | 6484                           | 6452             | 0                 | 11500             | 0                      | 0                 | 1                | 1                              | 7                | 1740              | 5480              | 0                 | 0                 |
|                        | 1171                      | 1171                           | 1165             | 2077              |                   | 2836                   | 2836              | 47004            | 47004                          | 46775            |                   |                   | 2980              | 3060              |
| layer 1 <sup>d</sup>   | 2                         | 2                              | 5                | 3                 | 20773             | 0                      | 0                 | 1                | 1                              | 7                | 1740              | 5480              | 0                 | 0                 |
| layer 2 <sup>e</sup>   | 1349                      | 1349                           | 1342             | 2392              | 2392              | 3266                   | 3266              | 34188            | 34188                          | 34022            | 572               | 1308              | 6389              | 8305              |

a: equilibrium with <sup>234m</sup>Pa /b: missing value estimated by the mean of adjacent layers/ c: 0-2 cm/ d: 2-8cm (BAB) 0-2 cm (DLD)/e: 8-22cm (BAB), 2-6 cm (DLD)

Possibility to test the RN effect (radiation nature, quantity)



Wildlife Dosimetry Workshop - Madrid 10-12 june 2014



# The soil scenario (1/2)

### **7** RN profiles

Srnick, M., Hrnecek, E., Steier, P., Wallner, A., Wallner, G., Bossew, P., 2008. Vertical distribution of 238Pu, 239(240)Pu, 241Am, 90Sr and 137Cs in Austrian soil profiles. Radioachim Acta 96, pp. 733-739.



- Possibility to test the effect of the profile shape
- Possibility to test the RN effect (radiation nature, quantity)





# The soil scenario (2/2)

#### The same « extremum » concepts, applied to soil





Wildlife Dosimetry Workshop - Madrid 10-12 june 2014



## External dose rates



Wildlife Dosimetry Workshop - STAR - Madrid 10-12 june 2014



## Data set used for calculation

### **7** EDEN V3

#### Organisms

- Nature, shape and size: reference organisms ERICA/ RAPs ICRP
- Composition: FASSET/ERICA

#### Media

- Air, water, soil/sediment
- Composition: FASSET/ERICA
- Shape : semi-infinite layers

#### RNs

Nuclear data: JEF (OECD-NEA 1997)

| Organism     | Mass (kg) | X(cm)    | Y(cm)    | Z(cm)    |
|--------------|-----------|----------|----------|----------|
| Insect larva | 1.77E-05  | 1.50E+00 | 1.50E-01 | 1.50E-01 |
| Benthic fish | 1.47E+00  | 5.00E+01 | 8.01E+00 | 7.01E+00 |
| Bee          | 5.89E-04  | 2.00E+00 | 7.50E-01 | 7.50E-01 |
| Rat          | 3.14E-01  | 2.00E+01 | 5.00E+00 | 6.00E+00 |
| Earthworm    | 2.62E-02  | 1.00E+01 | 1.00E+00 | 1.00E+00 |





IRSN 17/27

### Dose rates assessed for aquatic organisms



### Dose rates assessed for aquatic organisms





Wildlife Dosimetry Workshop - Madrid 10-12 june 2014

### Dose rates assessed for terr. organisms







## RN contribution / insect larva







### RN contribution / insect larva

| Site                                                         | ge Ace Bay    | Dubyna Lake Deep                       |               |             |  |
|--------------------------------------------------------------|---------------|----------------------------------------|---------------|-------------|--|
| Contamination                                                | Heterogeneous | Homogeneous                            | Heterogeneous | Homogeneous |  |
| On the sediment surface                                      |               |                                        |               |             |  |
| In the middle of the layer 1<br>In the middle of the layer 2 | 210Po         | 238U<br>234Th<br>234U<br>234U<br>230Th |               |             |  |





## <sup>234m</sup>Pa contribution / insect larva

|   | Site                       | Beaverlodg                                              | Dubyna Lake Deep |               |             |  |
|---|----------------------------|---------------------------------------------------------|------------------|---------------|-------------|--|
|   | Contamination              | Heterogeneous                                           | Homogeneous      | Heterogeneous | Homogeneous |  |
|   | Without <sup>234</sup> mPa | 210P0<br>238U<br>234Th<br>234U<br>234U<br>234U<br>230Th | 210Pb            |               |             |  |
| < | With <sup>234</sup> mPa    | 234mPa                                                  |                  |               |             |  |
|   |                            |                                                         |                  |               |             |  |





### Dose rate ratio heterogeneous vs homogeneous contamination





Wildlife Dosimetry Workshop - Madrid 10-12 june 2014



## Conclusions



Wildlife Dosimetry Workshop - STAR - Madrid 10-12 june 2014



### Some effects, but function of the case study?

### A consistent set of observations

- Aquatic organisms
  - External dose rates impacted by sediment description (up to 10<sup>3</sup>)
  - Depends on sediment contamination (nature and location of RNs)
  - Depends on organism (size, shape and location)
- Terrestrial organisms
  - Less sensitive (due to case study?)
  - Depends on nature and location of RNs
  - Depends on organism characteristics





### What to do about these effects?

### In the context of the tiered ERA

- At the screening stage
  - Keep the usual simple approach, combined with the highest activity determined in the soil/sediment sample

#### For upper tiers

- A way to refine the assessment, toward a more realistic approach
- Need for adapted tools ...



