Human Foodchain Modelling – Reducing Uncertainties

Radioecological modelling: fit for purpose - why?

Predictions made using radioecological models will be used in the early part of the transition phase to make longer-term decisions ……

…… models must be sufficiently robust and fit for purpose with uncertainties reduced
Radioecological modelling: fit for purpose

Activities of the WP are in three broad areas:

• ‘Improving models’
• ‘Process based models’
• ‘Hot particles’
Radioecological modelling: fit for purpose

Activities of the WP are in three broad areas:

• ‘Improving models’
• ‘Process based models’
• ‘Hot particles’

ALLIANCE Human Food Chain Roadmap
Improving models – FDMT JRodos

JRodos foodchain model (Ecosys-87) parameterisation predates IAEA TRS364 handbook [replaced by TRS472 in 2010]
Improving models – FDMT JRodos

JRodos foodchain model (Ecosys-87) parameterisation predates IAEA TRS364 handbook [replaced by TRS472 in 2010]

See poster comparing FDMT and TRS472 parameters
Improving models

See poster on Mediterranean database

Ecosys-87/FDMT in ECOLEGO

http://concert-h2020.eu/Document.ashx?dt=web&file=/Lists/Deliverables/Attachments/100/D9_13_D80_Improving%20models%20and%20learning%20from%20post-Fukushima%20studies_approval08012019.pdf&guid=01b5ac77-b2ec-4cda-9c98-917dba396f0f
Regionalisation (e.g. Norway)

- Three zones based around growing season
- Time of harvest for different crop types and leaf area index (yield for grass)

Leaf area index versus time for potatoes as entered into ECOSYS-ECOLEGO.

Ali/Danyl - presentation
Including ‘hot particles’ in radioecological models

- Incorporate hot particles into models to improve predictions
 - Do ‘hot particles’ matter re transfer in foodchain

Ole-Christian/Ali - presentation
Biological half-life database

Biological half-life database established for farm animal (products)

>600 entries

<table>
<thead>
<tr>
<th>Entry_ID</th>
<th>Reference</th>
<th>Organism_name_common English</th>
<th>adult_lamb_calf_etc.</th>
<th>Age_years</th>
<th>meat</th>
<th>Cs-137</th>
<th>Cs</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLB 1</td>
<td>Anderson et al. (1990)</td>
<td>Hen</td>
<td></td>
<td>0.11</td>
<td>meat</td>
<td>Cs-137</td>
<td>Cs</td>
<td>Continuous</td>
</tr>
<tr>
<td>CLB 2</td>
<td>Assimakopoulos et al. (1988)</td>
<td>Dairy Cow</td>
<td>Adult</td>
<td></td>
<td>milk</td>
<td>I-131</td>
<td>I</td>
<td>Field plus model</td>
</tr>
<tr>
<td>CLB 3</td>
<td>Assimakopoulos et al. (1988)</td>
<td>Sheep</td>
<td>Ewe</td>
<td></td>
<td>milk</td>
<td>I-131</td>
<td>I</td>
<td>Field plus model</td>
</tr>
<tr>
<td>CLB 4</td>
<td>Assimakopoulos et al. (1989)</td>
<td>Sheep</td>
<td>Ewe</td>
<td></td>
<td>milk</td>
<td>radiocaesium</td>
<td>Cs</td>
<td>Continuous administration</td>
</tr>
<tr>
<td>CLB 5</td>
<td>Bresford et al. (1996b)</td>
<td>Sheep</td>
<td>Lamb</td>
<td>0.42</td>
<td>meat</td>
<td>Co-139</td>
<td>Co</td>
<td>Single administration plus model</td>
</tr>
<tr>
<td>CLB 6</td>
<td>Bresford et al. (1996b)</td>
<td>Sheep</td>
<td>Lamb</td>
<td>0.42</td>
<td>liver</td>
<td>Co-139</td>
<td>Co</td>
<td>Single administration plus model</td>
</tr>
<tr>
<td>CLB 7</td>
<td>Bresford et al. (1996b)</td>
<td>Sheep</td>
<td>Lamb</td>
<td>0.42</td>
<td>kidney</td>
<td>Co-139</td>
<td>Co</td>
<td>Single administration plus model</td>
</tr>
</tbody>
</table>

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287.
Biological half-life database

- Biological half-life database established for farm animal (products)
 >600 entries

See poster

<table>
<thead>
<tr>
<th>Entry_ID</th>
<th>Reference</th>
<th>Organism_name_common_English</th>
<th>adult_lamb_calf/etc.</th>
<th>Age_years</th>
<th>meat</th>
<th>Cs-137</th>
<th>Ce</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anderson et al. (1990)</td>
<td>Hen</td>
<td></td>
<td>0.11</td>
<td>milk</td>
<td>I-131</td>
<td>I</td>
<td>Field plus model</td>
</tr>
<tr>
<td>2</td>
<td>Assimakopoulos et al. (1988)</td>
<td>Dairy Cow</td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Assimakopoulos et al. (1988)</td>
<td>Sheep</td>
<td>Ewe</td>
<td>0.11</td>
<td>milk</td>
<td>I-131</td>
<td>I</td>
<td>Field plus model</td>
</tr>
<tr>
<td>4</td>
<td>Assimakopoulos et al. (1989)</td>
<td>Sheep</td>
<td>Ewe</td>
<td>0.11</td>
<td>milk</td>
<td>radioisotope</td>
<td>Cs</td>
<td>Continuous administration</td>
</tr>
<tr>
<td>5</td>
<td>Bersford et al. (1996)</td>
<td>Sheep</td>
<td>Lamb</td>
<td>0.42</td>
<td>meat</td>
<td>Cs-137</td>
<td>Ce</td>
<td>Single administration plus model</td>
</tr>
<tr>
<td>6</td>
<td>Bersford et al. (1996)</td>
<td>Sheep</td>
<td>Lamb</td>
<td>0.42</td>
<td>liver</td>
<td>Cs-139</td>
<td>Ce</td>
<td>Single administration plus model</td>
</tr>
</tbody>
</table>

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287.
Impact of stable I and climate on I transfer to crops

Methods: I-131 tracer (in artificial rainwater) sprayed on grass and barley at two field sites: Apelsvoll (inland) and Fureneset (coastal) three times during the growing season (June-August). Samples taken for three weeks after each spraying.
Can process based models reduce uncertainties?
What is a processed based model

Process-based models **represent** and simulate physiological and biogeochemical **processes** and their interactions with the abiotic environment (water, climate, and nutrients) by **using functional relationships** [Larocque et al.]
What is a processed based model

Process-based models represent and simulate physiological and biogeochemical processes and their interactions with the abiotic environment (water, climate, and nutrients) by using functional relationships [Larocque et al.]
What is a processed based model

Process-based models represent and simulate physiological and biogeochemical processes and their interactions with the abiotic environment (water, climate, and nutrients) by using functional relationships [Larocque et al.]
This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287.

Smith et al.

Beresford et al.

$F_m \text{Sr} = \frac{OR_{\text{milk-diet}} \cdot [Ca]_{\text{milk}}}{I_{Ca}}$
Variability in empirical transfer values

- Cereals (grain):
 - Organic
 - Clay
 - Loam
 - Sand

- Leafy veggies (leaves):
 - Organic
 - Clay
 - Loam
 - Sand

- Root veggies (roots):
 - Organic
 - Clay
 - Loam
 - Sand

- Tubers:
 - Organic
 - Clay
 - Loam
 - Sand

- Grass:
 - Organic
 - Clay
 - Loam
 - Sand

TF [kg kg⁻¹]
Variability in empirical transfer values
‘Absalom’ or ‘SAVE’ model for Cs

Environmental Science and Technology, 1999, 33, 1218–1223

Predicting Soil to Plant Transfer of Radiocesium Using Soil Characteristics

School of Biological Sciences, Sutton Bonington Campus, University of Nottingham, Nottingham, Leicestershire, LE12 5RD, U.K.
National Radiological Protection Board, Chilton, Didcot, Oxfordshire OX11 0QX, U.K.
Laboratory of Soil Fertility and Soil Biology, Faculty of Applied Biological and Agricultural Sciences, K. U. Leuven, K. Meirplein, 92 B 3001 Heverlee, Belgium

and slaughter of sheep are in place 12 years after the Chernobyl accident with more than 360 farms affected in Wales. Radiocesium contamination of agricultural products in the areas of Belarus, Ukraine, and Russia also remains high. Failure to predict this long-term availability of radiocesium was partly due to the differences between the organic, acidic soils with a low clay and nutrient (K) status which received most of the U.K. deposition and the low-land clay-rich mineral soils on which most previous Cs studies had been conducted (2). Illitic clay is the principal adsorptive surface for radiocesium in soil, while potassium is the major competitor for plant and soil sorption sites. Thus, these two soil properties have a large influence on the bioavailability of radiocesium in soil.

Established models which consider radiocesium uptake by plants, such as ECOSYS (9) and PATHWAY (6), do not incorporate the effects of soil properties on radiocesium bioavailability but instead describe radiocesium uptake from a generic soil. However, radiocesium bioavailability has been shown to be strongly influenced by soil properties such as K status and clay content (6. 11), both of which vary greatly.

This project has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 662287.
Monte-Carlo prediction of changes in areas of west Cumbria requiring restrictions on sheep following the Chernobyl accident
Tag grass (m² kg⁻¹) =

\[(0.0134e^{-0.46t} + 0.00161e^{-0t})e^{0.0339OM}\]
Tag grass (m² kg⁻¹) =

\[(0.0134e^{-0.46t} + 0.00161e^{-0t})e^{0.0339OM}\]
Tag grass \((m^2 \text{ kg}^{-1}) = \)

\[
(0.0134e^{-0.46t} + 0.00161e^{-0t})e^{0.0339\text{OM}}
\]
Predicted restricted areas
Restricted areas for Chernobyl

^{137}Cs & ^{134}Cs only

This workshop

- ‘Normal’ modelling approaches
- Process based models (why?)
- Human food chain radioecology – future research priorities
This workshop – what will we do with results

• Process based models
 ➢ Breakout/plenary discussion will be summarised in deliverable report on CONFIDENCE process based modelling studies

• Human food chain radioecology – future research priorities
 ➢ Discussions will be summarised in our final deliverable report and also feed into revision of Strategic Research Agenda
This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287.

Ask questions & discuss @Radioecology