Supplemental Slides

Landscape Perspective

Choices for EcoRA focus

	spatial scale	temporal scale	pathways	consequences
	site	acute	biotic	organism (statistical
	reach	episodic	abiotic	population)
-	watershed	chronic	combined	population
	region	generational	A ANY	(biological)
	global	- and a support		species
	A + House you	We want and a start	and the second	ecological system
		the state of the state of the		at a stand with a stand
				a the stand
A set		APPLICATION OF THE REAL	AL DE ALCO	

nt Risk Paradigm

- Developed to address chemicals in the environment
 - Forensic Ecology
 - Future Scenarios
- Expanding to biological and physical agents
 - Exotic species
 - Genetically Modified Organisms
 - Physical Alterations (yellow metal, flood, avalanche, ...)

Habitat Suitability Indices

General Process (Typically)

- reflect best professional judgment of a panel of experts
- developed by fitting population density data to landscape components
- explanatory, correlative, or surrogate variables identified
- models constructed using simple algebraic and graphic expressions

Wildlife Dosimetry - Madrid 12 June 2014

1	<u>File E</u> dit <u>V</u> iew Insert F <u>o</u> ri	mat <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp	<u>H</u> SI Values		Type a question for he	p 🝷 🗕 🗗	×
1							
: 🔁	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 🕱 🖏 👰 🕅 Reply with Char	naes				
	D29 🗸	€ 65					
	Α	B	C	D	F	F	
1	Project Identification:		<u> </u>				
2							-
3	Site Name:				ik		
4							
5	Species:	<u>Bald Eagle</u>					
6							
7	HSI=((V1xV2)^0.5)x((V3xV	/4)^0.5)					
8	V1 =	Area covered by open water a	nd adjacent wetlands.				
9		[Measurement endpoint value	is expressed as area (km2).				
10		V1 is scaled across area (km2)				
11		for 0 to 10 km2 fro 0.0 to 1.0; 2	>10 km2, 1.0.				-
12	\/2 -	The Merpheedaphic Index defi	nod as Total Dissolved Solids (r	pm)/moan dopth (cm) is a surr	ogato for productivity		
14	v2 -	Measurement endnoint value	is derived from measures of tr	tel dissolved solids (nnm)/me	an water denth (cm) 1		
15		V2 is scaled over a range of va	alues (X):	nai uissoiveu sonus (ppin//mee	an water depth (cm/.)		
16		for 0 to 1.0 from 0.0 to 0.2: 1 to	o 10, 0.2 to 0.4: 10 to 20, 0.4 to	0.7: 20 to 50. 0.7 to 0.9: 50 to	100, 0.9 to 1.0; >100, 1.0,		
17							
18	V3 =	Percentage of potential nesting	area covered by mature timbe	r.			
19		[Measurement endpoint value	is expressed as percentage (>	0.]			
20	V3 is scaled across percentage cover ranges X:						
21	for 0 to 75% from 0 to 1.0; >75%, 1.0.						
22							
23	V4 =	Number of buildings or campsi	tes/km2 of upland evaluation ar	ea.			
24	[Measurement endpoint value is expressed as a count normalized to an area of 0.4 ha.]						
25	V4 is scaled across building density ranges (X):						
26	for 0 to 20 buildings/km2 from 1.0 to 0.0; >20, 0.0.						
21	Dahman Islantifiaatian	V4 Management Finducint	VO Management Funder sight	V2 Management Funder sight			-
28		o o	v∠ measurement Endpoint			HSI	
29	FOREST_AT	9.0	0.03	0.0	1.2	0.82	-
31	POLYGON 1	6.0	Δ5	55.0	0.54	0.02	-
32		0.0	0.87	0.73	0.98	0.61	-0
.33	Marsh, 2	25.0	44	35.0	0.8	0.01	-
etry 34	Madrid 12 June 2014	1.00	0.86	0.47	0.96	0.62	~
14 4	N. N. Conort Dold Cool	- /)		

Pros and Cons of HSIs

- Overly simplistic
- Poor predictive capacity
- Limited vertication
- Simple to use

00

Can be done quickly
Provides reasonable qualitative estimate of habitat quality

Adapted from presentation by A. Farmer, Wildlife Habitat Modeling: How far has it come and how much farther can it go? ASTM Symposium on *Landscape Ecology and Wildlife Habitat Evaluation: Critical Information for Ecological Risk Assessment, Land-Use Management Activities, and Biodiversity Enhancement Practices*, 7-9 April 2003, Kansas City, MO. (Kapustka 2004)

Equation 1. For use with home range data

$$N_s = \frac{A_s}{HR_s}$$

Equation 2. For use with density data.

$$N_s = A_s \times CC_s$$

Where:

 N_s = the number of individuals likely to inhabit the subdivision

$$A_s = the area of the subdivision$$

- HR_s = the approximate home range size of the animals within the subdivision
- CC_s = the approximate carrying capacity of the subdivision where carrying capacity is an expected density estimate

From: ASTM E2385 Standard Guide for Estimating Wildlife Exposure using Measures of Habitat Quality

Equation 3. Time allocation as a function of habitat quality

$$P_{s} = \frac{A_{s}}{HR_{s}}$$
$$\frac{HR_{s}}{\sum_{s=1}^{n} \left(A_{s} HR_{s}\right)}$$

Where:

- P_s = Proportion of time spent foraging in sub-area s
- A_s = Area of sub-area s
- HR_s = home range size associated with habitat quality in sub-area s

Equation 4. The basic exposure estimate used to calculate daily dose modified to incorporate Habitat Quality.

$$ADD_{pot} = \sum_{s=1}^{m} P_{s} \left[\sum_{j=1}^{n} (C_{js} \times FR_{js} \times NIR_{j}) + (D_{s} \times FS \times FIR_{total}) \right]$$

Where:

ADD_{pot}	=	Potential average daily dose
P_{s}	=	AUF; the proportion of time spent foraging in sub-area s (equation 2)
C_{js}	=	Average concentration of contaminant in food type <i>j</i> in sub-area s
FR_{js}	=	Fraction of food type <i>j</i> contaminated in sub-area s
NIR_{j}	=	Normalized ingestion rate of food type j
Ds	=	Average contaminant concentration in soils in sub-area s
NIR _{total}	=	Normalized ingestion rate summed over all foods
FS	=	Fraction of soil in diet

From: ASTM E2385 Standard Guide for Estimating Wildlife Exposure using Measures of Habitat Quality

	Compile Habitat Parameters for Assessment Species	
nalysis		
Delinear (qualitatively by o Acquire	te habitat areas cover types, terrain, etc.) HSI input data	
Estimate Population		
(N) by zone; species	Estimate Exposure [i.e., wildlife exposure factors separately for each zone; each species]	
N=Area x Hor x CC		

Risk Trace

- Probabilistic receptor migration model.
 - Generates receptor movement influenced by habitat quality.
- Spatially explicit exposure assessment model.
 - Calculates internal exposure resulting from ingestion of contaminated food, as well as any other applicable routes of exposure (*e.g.*, soil).
- Screening-level risk assessment model.
 - Calculates Hazard Quotients (HQs) for each contaminant; these are equal to the site contaminant concentration divided by the selected safe benchmark concentration for ecological receptors (toxicity reference values, TRVs).

×