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The main components of dose

l Estimating exposure and dose to a free ranging animal is not a 
trivial matter. 



Factors affecting the internal dose



l Internal dose rate needs to be determined accurately:
l Estimate concentration of radionuclide in animal first 
l a) from activity in the medium, using transfer functions, or
l b) from monitoring (biota captured in the field), alive or dead.

l Then calculate dose => Apply DCC – use ERICA or other tool
l Uncertainties in the determination of the activity in the biota
l Uncertainties in the internal dose conversion coefficients (DCC)
l Impact of shape, inhomogeneous distributions / organ doses, 

radiation weighting factor

l Specific limitations of the assessment tools (more later)

Internal dosimetry – key issues



l a) Extrapolating from medium concentration 
l Uncertainty in transfer (concentration factors) 

- Considerable variation, ranging over several orders of magnitude.

l Different CR with different life stage 
l Overestimation of transfer in dynamic situations

or
l b) Direct measurement (monitoring)
l Uncertainty in the field sampling:

- Problems with sampling sparsity and representativeness
- Problems with population census valuation (random mobility of biota).

l Uncertainty in the measurements themselves
- Problems with radiation measurements (local variations in measured 

background, masking by natural radionuclides). 
- Analytical and counting errors.

Determination of the activity in the biota



Dose conversion factors - impact of shape

l Organism shapes approximated by ellipsoids, spheres or 
cylinders of stated dimensions. This is a major oversimplification 
of the world but use of voxel phantoms is complicated.

l Basis of the dose rate is the absorption fraction which depends 
on organism size and radiation type

l Dose rate averaged over organism volume immersed in 
uniformly contaminated medium.



Dose conversion factors - impact of shape (2)

l Internal exposure 
increases with 
energy, but… 

l Relatively little 
impact of size 

l Mass ratio 
fox/woodlouse = 
39000

l Ratio of exposures:
l Factor 3 for low energy photons
l Factor 2 for high energy photons

l Cause: relatively low range - most internal radiation self-absorbed
l U-238: α-emitter: range in tissue: ca. 0.1 mm
l Sr-90/Y-90: β-emitter: range in tissue: few mm 
l Co-60: γ-emitter: range in tissue: ca. 1000 mm



Only a few nuclides homogeneously distributed: 3H, 14C, 40K, 137Cs. Many 
concentrate in specific organs e.g. Green gland (Tc), Thyroid (I), Bone (Sr, 
Ra), Liver (Pu), Kidney (U).

DCC - inhomogeneous distributions

Gómez-Ros et al. (2009) showed that 
whole body DCC uncertainties due to 
inhomogeneous nuclide distribution 
are < 30% for photons and electrons 
for all considered organisms. 

For electrons, the uncertainties are 
negligible below certain energies, 
dependent on the size of the 
organisms.



DCC – Approach for organ doses

l Ratio of the average dose rates organ/whole body is 
proportional to the whole body/organ mass ratio. 

l Conditions for this to be true:
l Absorbed fraction should be close to 1
l Alpha-particles and electrons,

l For photons, the approximation is not so accurate due 
to the penetration of the emitted photon (from the 
considered organ) into the surrounding tissue.

l Key parameter the range of the photon in tissue 
(depends on energy).



Impact of the radiation weighting factor

l Equiv. dose = absorbed dose × radiation weighting factor
l Need to make allowance of such factors as LET or RBE
l No firm consensus for RWF
l 1 for γ and > 10keV β radiation
l 3 for ≤ 10keV β radiation
l 10 for α (non stochastic effects) vs. 20 for humans (stochastic)

l Low ß component different from 1. 
l Assumes that the experimental RBEs for tritium represent LET 

values for low energy β’s (conservative - uncertainty ≤ × 3).

l The α component has been variously proposed as ranging 
between 5 (UNSCEAR 1996) and 50 (Brown et al., 2003) 
l 10 commonly used for NHB, with an uncertainty between ≤ × 2 – 5.



Problems when using assessment tools

l Plant geometries in ERICA are unrealistic:
l They do not really represent whole-organisms. 
l Grass geometry taken from the ICRP.
l Excludes ‘in soil’ dose rates, considers only dose above ground. 
=> Create a surrogate organism to represent the plant (e.g. leaf) and 
compare DCC values to the default grass. 

l Size interpolation within predefined mass range:
l 0.0017 to 550 kg for animals on soil.
l 0.0017 to 6.6 kg in soil; 0.035 to 2 kg for birds; 10-6 to 103 kg for 

aquatic organisms.

lSmall errors incurred when out of range - consult Table 10 of 
ERICA help file.



Factors affecting the external dose



l External dose rate also needs to be determined accurately:
l Option 1: Start from activity in the medium, then calculate external 

dose using a model that takes into account occupancy in areas of 
different radiation level (air, on soil, in soil…) => ERICA tool.

l Option 2: Attach dosimeter to measure external dose to animal in 
natural state (Woodhead, 1984 - plaice tagged with dosimeters; 
Beresford et al. 2008 terrestrial TLD study).

l Option 3: Use hand-held dosimeters & assume same dose for biota 
(more risky – detector does not travel with the animal).

l Organism geometry effects
l Absorbed fraction (external) = 1 – Absorbed fraction (internal)
l As in internal dose, there is an assumption of ellipsoidal shape that 

introduces an error
l Organism size at different life stages could have a large influence on 

external dose

External dosimetry – key issues



l Limitations of  the 
ERICA approach due 
to dosimetry 
asumptions: skin/fur, 
biota in bordering 
environments (mixed 
terrestrial, aquatic, 
aerial scenarios e.g. 
seabird on land, etc).

Known limitations of the ERICA approach
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l Ignores life stage-based occupancy differences e.g. bird 
(flying) versus egg (on tree/nest).



l Source – target geometry effects
l Geometry-related uncertainties for birds due to flying height, egg on 

nest vs. flying bird, etc.
l DCC’s for a fixed soil/sediment contamination depth.
l Depth profiles seldom considered (Timms et al., 2004). 
l Assumption that source term is a smooth plane (Eckerman et al.,1993)

- Rarely the case in terrestrial habitats (≤ × 2 uncertainty).

l Occupancy – related effects
l Uncertainty in organisms with different life stages

- Varying external exposures for different life stages with different occupancy
- Some aquatic organisms may be surrounded by sediment during certain life 

stages (frog vs. tadpole)

l Limits on what organisms appear under some ecosystems:
l cannot calculate DCC for marine bird in air (do bird on water or sediment)

External dosimetry – key issues (2)



l Thin coverage of source has an impact. 
l No appreciable difference between assuming radioactivity distributed 

(a) within the first 50 cm of soil; or (b) to infinite depth. 
l At < 10 cm depth there would be an effect for high-energy photons.
l Surface roughness can be important.

l Similar effect for small and large animals.

Effect of source depth



l Spatial issues in field dose estimation

l Need to account for the time 
animals spend in 
environments (temporal 
component) that vary 
significantly in contaminant 
levels (spatial component).

l Averaging regions of high 
spatial variability can blur 
conclusions about the 
temporal variability of dose. 

l Some individuals may be exposed to contaminants out of a larger 
population due to their erratic wandering and foraging patterns in regions 
more contaminated than others (affects internal dose also).

Field voles in agricultural landscape using SmallSteps model 
(http://www.wageningenur.nl/en/show/GridWalkSmallSteps.htm)

Issues with spatial distribution



l An organism’s mobility in a heterogeneously contaminated area 
leads to variation in exposure observed between individuals. 

l This can be captured in random or quasi-random walk models 
l Simulate behaviour and movement of organisms in space

l Determine what 
individuals of a 
particular population 
are more at risk, 
rather than treating all 
them as having had 
the same exposure.

l Can take into account 
multiple stressors in a 
multi-species setting. 

An option – random walk modelling



l Represents 
movement & food 
intake over raster map

l Accumulation of 
contamination over 
time

l Feeding relationships 
between species

l Calculates lifetime 
exposure to a 
contaminant

l Can include different life stages with different exposure routes
l Predictions for Cd accumulation agree Dutch site field data
l Applicable to variability in Chernobyl and Fukushima fauna

Example – EcoSpace (Loos et al., 2010)



Issues with direct dose measurement



l Limited number of studies 
reporting direct measurement

l Attaching TLDs to small 
mammals at Chernobyl 
(Beresford et al., 2008)
l Related the TLD reading to the 

estimated whole-body dose.
l External dose predicted was at 

worst ≤ × 3 lower than the TLD
measurement.

lModerately good estimate of external and internal dose using ERICA 
(1 order of magnitude or less)

l Difference in agreement between sites relate to soil type variations.
l Air-kerma gives a fairly good approximation of external dose (≤ × 2). 

Internal dose measurement



l Radiation-related issues to be considered:
l α and β-emitters difficult to measure may be ‘accidentally’ neglected. 
l Additional shielding e.g. from snow, soil litter, etc. for β and low γ-

energy emitters needs to be considered.
l Elevation correction for external dose to plants and birds with 

respect to dose at ground surface is important.
l ‘False positives’ in TLD measurements – setting baseline

l Radiation measured by hand-held dosimeter probably less good 
estimate of external dose than animal-borne dosimeter.

l Contrasting internal versus external dose pathways
l Intercalibration of handheld monitor, TLD, gamma spectrometers
l Need to factorise random mobility for animals who nest or get their 

food from locations different to that in which they are sampled.

External dose measurement



l Radionuclide: Cs-137 (γ-emitter, ~ 0.7 MeV)
l DCC’s for internal and external depend on absorbed fraction AF:

l Hence the internal and external dose rates are:

l Where we assume CF scales allometrically as CF = a × Mb. For 
137Cs this is  a = 63.1 and b = -0.021 (taken from marine).

l Assumes equilibrium!

Internal versus external dose comparison



l For biota > 100 g internal dose clearly dominates over external.
l Assessment not possible on the basis of external dose only.
l Especially true if the internal dose arises from radionuclides

incorporated at large distances from sampling point.

Mass (kg) r
3.1E-06 1.2E-01
2.4E-05 2.8E-01
1.4E-04 4.6E-01
2.1E-04 2.3E-01
7.7E-04 7.4E-01
1.3E-03 6.3E-01
1.6E-03 1.1E+00
2.4E-03 1.2E+00
2.8E-03 8.7E-01
5.2E-03 9.9E-01
1.3E-02 2.2E+00
2.1E-02 2.0E+00
1.6E+00 9.7E+00
1.9E+00 1.1E+01
2.3E+00 6.7E+00
6.1E+00 1.5E+01

Internal versus external dose comparison (2)



Attempted quantification of uncertainties



l Overall uncertainty  difficult to quantify due to imponderables 
such as spatial variability, mixed environments, shielding, etc.

l Studies within the EMRAS project – intercomparison of models to 
estimate radionuclide activity concentrations in non-human biota.

l Within the whole dose assessment, uncertainties associated with 
the dosimetry are much less than that associated with transfer.
Dosimetry

l Inter-model variability of dose conversion factors for ERICA vs
other approaches (Vives i Batlle et al., 2011):
l Internal dose rates ≤ ± 25%
l External dose rates ≤ ± 120%

l For the assumption of the homogeneous distribution, the 
estimation of the internal exposure is pretty accurate (10-20 %)

Attempt at evaluation of uncertainties



l Impact of organ doses and inhomogeneous distributions not 
more than 30% (Gomez-Ros et al. 2008).

l Impact of the shape is little unless for extreme shapes e.g. very 
long or thin organisms (Ulanovsky, 2006).
l Up to 25% for frog (Mohammadi et al., 2011).

Transfer
l Uncertainty in transfer factors is large: ≤ factor of × 10 or more if 

transfer factors are used.
l This can be reduced to ≤ factor of × 2 if transfer estimated with a 

dynamic model.

l This compares with residual uncertainty of ≤ 60% for a 
monitoring-based assessment 

l On top of all this there is an added layer of interpretation issues

Attempt at evaluation of uncertainties (2)



Interpretation issues



l Nature adding very large variation to all things in the field, 
leading to low levels of statistical confidence, which can rarely be 
achieved with small sample sizes. 

l Interpret cautiously effects appearing over a narrow contaminant 
range where there is large spatial variability in background.

l Avoid problems with ‘low-number statistics’.
l Higher chance to capture damage/stressed animals can lead to 

overestimation of morphological effects for small sample 
numbers.

l Different life stages of organisms can show distinct variations in 
radiosensitivity at the same dose level (ICRP Committee 5 
publication).

Uncertainty in results interpretation



l Correlation does not necessarily equate to causation; particularly 
if confounding variables are not accounted or the dosimetry is not 
adequate).
l Need for controls in correlative studies
l Confounding factors when examining dose-response relationships 

not included in the statistical design (interaction with other pollutants 
/ biological agents, manmade ecosystem changes e.g. abandoning 
contaminated land, radio-adaptation).

Uncertainty in results interpretation (2)



Conclusions

l Uncertainties in radionuclide concentration in biota (transfer) affect dose 
calculations severely – for many CR’s there are no data.

l Uncertainties in the dose calculation part (organism shape, modelling
the dose, inhomogeneous distributions & other simplifications) are 
controllable and generally we tread on safe ground because they are 
well studied (exceptions notwithstanding).

l Uncertainties in field operations are potentially the most misleading: 
instrument calibration, issues of spatial distribution, need to combine 
correctly internal vs. external dose, and statistical issues.

l Radiation effects estimation adds a final layer of uncertainty due to risks 
of selective sampling and confounding factors in causation.

l Extreme care required in field dosimetry studies - attribute cause to 
effect only when all other potential explanations have been eliminated.

l Results must ultimately make scientific sense and have a proper 
mechanistic explanation (correlation vs. causality).
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